

Z6ABGH3DACA-QE

32 GB, 2Rx8 262-Pin DDR5-5600 SODIMM

Data Sheet

2023.06 Rev.01

32 GB DDR5 SDRAM SODIMM Specification

Specifications

Max. Speed; CAS Latency	DDR5-5600@CL=46
Row Cycle Time (tRCmin)	48 ns
Min. RAS-CAS-Delay (tRCD)	16 ns
Min. Row Precharge Time (tRP)	16 ns
Row Active Time (tRASmin)	32 ns
CL-tRCD-tRP	46-45-45
Operating Temperature	0°C to +85°C
Storage Temperature (T _{STG})	-55 °C to 100 °C

Features

- 262-pin, small-outline dual in-line memory module (SODIMM)
- 2Rx8 memory module (2 rank of x8 DDR5 SDRAMs)
- Power supply:
 - Vin_Bulk = 5V
 - VDD = VDDQ = 1.1 V (-33mV / +66mV)
 - VPP = 1.8V (-125mV / +250mV)
 - VDDSPD = 1.8V (1.7V to 1.98V)
- VrefDQ / VrefCA / VrefCS Training
- Burst Length (BL) 16 and 8 with Burst Chop(BC)
- On-DIMM SPD EEPROM with hub function and integrated temperature sensor (TS)
- On-DIMM Power management integrated circuit (PMIC)
- 32 internal banks; 8 groups of 4 banks each
- ZQ Calibration
- Gold edge contacts
- Fly-by topology
- Terminated control command and address bus
- PCB Height: 30.00 mm

Doc. No. DSZ6ABGH3DACAZF.01 Z6ABGH3DACA-QE 32 GB, 2Rx8 262-Pin DDR5-5600 S0DIMM

Ordering Information

Part Number	Module Density	Configuration	Speed Bin (CL-nRCD-nRP)	Operating Temperature	Storage Temperature
Z6ABGH3DACA-QE	32 GB	2G × 64 (2Gx8 2Rank)	DDR5-5600 (46-45-45)	0°C~85 °C	-55 ℃ ~100 ℃

Address Format

DIMM Density	Row address	Column address	Device bank group address	Device bank address per group	Device configuration	Device Quantity
32 GB(2Rx8,X64)	64K A[15:0]	1K A[9:0]	8 BG[1:0]	4 BA[1:0]	16Gb(2Gx8)	16

Pin Configurations

Pin#	Front Side	Pin#	Front Side	Pin#	Front Side
1	VIN_BULK	89	VSS	175	CB3_B
3	VIN_BULK	91	DQ30	177	VSS
5	RFU	93	VSS	179	DQ0_B
7	PWR_GOOD	95	CB0_A	181	VSS
9	VSS	97	VSS	183	DQ2_B
11	DQ0_A	99	CB2_A	185	VSS
13	VSS	101	VSS	187	DM0_B_n
15	DQ2 A	103	CB3_A	189	VSS
17	VSS	105	VSS	191	DQ4_B
19	DM0_A_n	107	CA0 A	193	VSS
21	VSS	109	CA1 A	195	DQ6 B
23	DQ4_A	111	VSS	197	VSS
25	VSS	113	CA2_A	199	DQ8_B
27	DQ6 A	115	CA4 A	201	VSS
29	VSS	117	VSS	203	DQ10 B
31	DQ8 A	119	CA6 A	205	VSS
33	VSS	121	CA8 A	207	DQS1_B_c
35	DQ10 A	123	VSS	209	DQS1_B_t
37	VSS	125	CA10_A	211	VSS
39	DQS1_A_c		KEY	213	DQ12_B
41	DQS1_A_t	127	CA12 A	215	VSS
43	VSS	129	VSS	217	DQ14_B
45	DQ12_A	131	CK0_A_t	219	VSS
47	VSS	133	CK1_A_c	221	DQ16_B
49	DQ14 A	135	VSS	223	VSS
51	VSS	137	CK0_B_t	225	DQ18_B
53	DQ16_A	139	 CK0_B_c	227	VSS
55	VSS	141	VSS	229	DM2_B_n
57	DQ18_A	143	RFU	231	VSS
59	VSS	145	CA11_B	233	DQ20_B
61	DM2_A_n	147	VSS	235	VSS
63	VSS	149	CA9_B	237	DQ22_B
65	DQ20_A	151	CA7_B	239	VSS
67	VSS	153	VSS	241	DQ24 B
69	DQ22_A	155	CA5 B	243	VSS
71	VSS	157	CA3 B	245	DQ26_B
73	DQ24 A	159	VSS	247	VSS
75	VSS	161	CS0_B_N	249	DQS3_B_c
77	DQ26 A	163	RESET_n	251	DQS3 B t
79	VSS	165	CS1_B_n	253	VSS
81	DQS3_A_c	167	VSS	255	DQ28 B
83	DQS4_A_t	169	DQS4_B_c	257	VSS
85	VSS	171	DQS4_B_t	259	DQ30 B
87	DQ28_A	173	VSS	261	VSS

Doc. No. DSZ6ABGH3DACAZF.01 Z6ABGH3DACA-QE 32 GB, 2Rx8 262-Pin DDR5-5600 S0DIMM

Pin#	Back Side	Pin#	Back Side	Pin#	Back Side
2	HSA	90	VSS	176	CB2 B
4	HSCL	92	DQ31 A	178	VSS
6	HSDA	94	VSS	180	DQ1 B
8	PWR EN	96	CB1 A	182	VSS
10	VSS	98	VSS	184	DQ3 B
12	DQ1_A	100	DQS4_A_c	186	VSS
14	VSS	102	DQS4_A_t	188	DQS0_B_c
16	DQ3_A	104	VSS	190	DQS0_B_t
18	VSS	106	CS0_A_n	192	VSS
20	DQS0_A_c	108	ALERT_n	194	DQ5_B
22	DQS0_A_t	110	CS1_A_n	196	VSS
24	VSS	112	VSS	198	DQ7_B
26	DQ5_A	114	CA3_A	200	VSS
28	VSS	116	CA5_A	202	DQ9_B
30	DQ7_A	118	VSS	204	VSS
32	VSS	120	CA7_A	206	DQ11_B
34	DQ09_A	122	CA9_A	208	VSS
36	VSS	124	VSS	210	DM1_B_n
38	DQ11_A	126	CA11_A	212	VSS
40	VSS		KEY	214	DQ13_B
42	DM1_A_n	128	RFU	216	VSS
44	VSS	130	VSS	218	DQ15_B
46	DQ13_A	132	CK1_A_t	220	VSS
48	VSS	134	CK1_A_c	222	DQ17_B
50	DQ15_A	136	VSS	224	VSS
52	VSS	138	CK1_B_t	226	DQ19_B
54	DQ17_A	140	CK1_B_c	228	VSS
56	VSS	142	VSS	230	DQS2_B_c
58	DQ19_A	144	CA12_B	232	DQS2_B_t
60	VSS	146	CA10_B	234	VSS
62	DQS2_A_c	148	VSS	236	DQ21_B
64	DQS2_A_t	150	CA8_B	238	VSS
66	VSS	152	CA6_B	240	DQ23_B
68	DQ21_A	154	VSS	242	VSS
70	VSS	156	CA4_B	244	DQ25_B
72	DA23_A	158	CA2_B	246	VSS
74	VSS	160	VSS	248	DQ27_B
76	DQ25_A	162	CA1_B	250	VSS
78	VSS	164	CA0_B	252	DM3_B_n
80	DQ27_A	166	VSS	254	VSS
82	VSS	168	CB0_B	256	DQ29_B
84	DM3_A_n	170	VSS	258	VSS
86	VSS	172	CB1_B	260	DQ31_B
88	DQ29_A	174	VSS	262	VSS

Pin Descriptions

Symbol	Туре	Function
CKx_t, CKx_c,	Input	Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
CA0_A - CA6_A, CA0_B - CA6_B	Input	Command/Address Inputs: CA signals provide the command and address inputs according to the Command Truth Table. Note: Since some commands are multi cycle, the pins mat not be interchanged between devices on the same bus.
CS0_A_n - CS1_A_n, CS0_B_n - CS1_B_n	Input	Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. CS_n is also used to enter and exit the parts from power down modes.
DQ0_A - DQ31_A, DQ0_B - DQ31_B	Input	Data Input/Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst.
CB0_A - CB3_A, CB0_B - CB3_B	Input	DIMM ECC check bits
DQS0_A_t - DQS4_A_t DQS0_A_c - DQS4_A_c DQS0_B_t - DQS4_B_t DQS0_B_c - DQS4_B_c	Input/ Output	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. DDR5 SDRAM supports differential data strobe only and does not support single-ended
DM0_A_n-DM3_A_n, DM0_B_n-DM3_B_n	Input	Input Data Mask: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. For x8 device, the function of DM_n is enabled by MR5:OP[5]=1. DM is not supported for x4 device.
LBDQ	Output	Loopback Data Output: The Output of this device on the Loopback Output Select defined in MR53:OP[4:0]. When Loopback is enabled, it is in driver mode using the default RON described in the Loopback Function section. When Loopback is disabled, the pin is either terminated or HiZ based on MR36:OP[2:0]
LBDQS	Output	Loopback Data Strobe: This is a single ended strobe with the Rising edge-aligned with Loopback data edge, falling edge aligned with data center. When Loopback is enabled, it is in driver mode using the default RON described in the Loopback Function section. When Loopback is disabled, the pin is either terminated or HIZ based on MR36:OP[2:0]
ALERT_n	Input/ Output	Alert: If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. During Connectivity Test mode, this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to VDDQ on board.
RESET_n	Input	Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDDQ,
HSCL	Input	Host SidebandBus bus clock, supplied by the master.
HSDA	Input/ Output	Host SidebandBus data, connected from the master to bubs or host bus client devices.
HSA	Input	Host SidebandBus bus device ID address pin; input to a hub or other client device to distinguish between identical devices in the I3C Basic address range.
RFU		Reserved for Future Use. No on DIMM electrical connection is present.

Doc. No. DSZ6ABGH3DACAZF.01 Z6ABGH3DACA-QE 32 GB, 2Rx8 262-Pin DDR5-5600 S0DIMM

	•	32 GB, 2Rx8 262-Pin DDR5-5600 S0DIMM
	_	
Symbol	Туре	Function
PWR_EN	Input	PMIC Enable. When this pin is high, the PMIC turns on the regulator. When this pin is low, the PMIC turns off the regulator. This pin shall not be left floating. If it is not used, it shall be tied to GND.
PWR_GOOD	Input/ Output	Power good indicator. Open Drain output. The PMIC floats this pin high when VIN_Bulk input supply as well as enabled output buck regulators and all LDO regulator tolerance threshold is maintained as configured in appropriate register. The PMIC drives this pin low when VIN_Bulk input goes below the threshold or configured in the appropriate register or and LDO output regulator exceeds the threshold tolerance. Input: The PMIC disables its output regulators when this pin is low. The LDO outputs shall remain on.
VIN BULK	Supply	5V power input supply to the PMIC for analog circuits.

		disables its output regulators when this pin is low. The LDO outputs shall remain on.	
VIN_BULK	Supply	5V power input supply to the PMIC for analog circuits.	
VSS	Supply	Ground	
NC		No connect: No internal electrical connection is present.	
NF		No function: May have internal connection present, but has no function.	

们力存

General Description

High-speed DDR5 SDRAM modules use DDR5 SDRAM devices with four or eight internal memory bank groups. DDR5 SDRAM modules benefit from DDR5 SDRAM's use of a 16n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR5 SDRAM effectively consists of a single 16n-bit-wide, eight-clock data transfer at the internal DRAM core and sixteen corresponding n-bit-wide, one-half-clockcycle data transfers at the I/O pins.

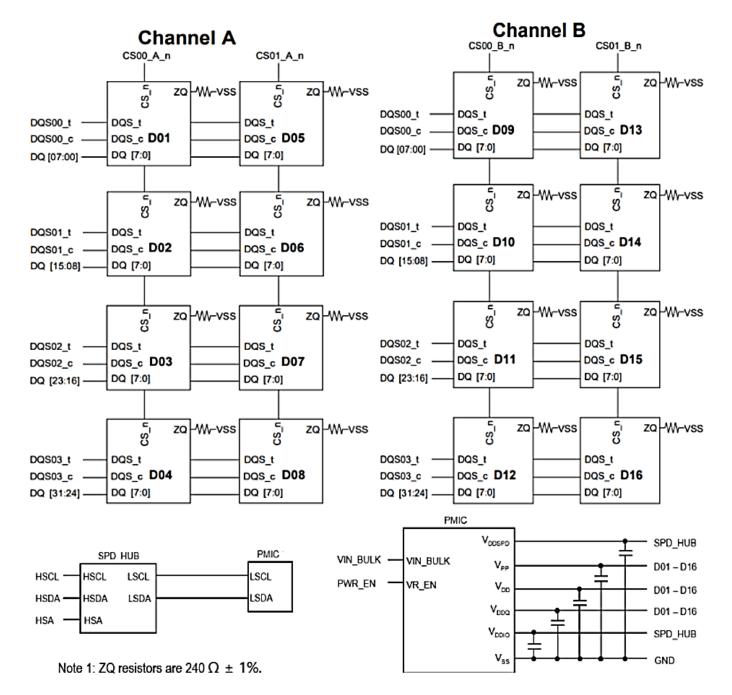
DDR5 modules use two sets of differential signals (DQS_t and DQS_c) to capture data, and CK_t and CK_c to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals.

Power Management Integrated Circuit Operation

The power management integrated circuit (PMIC) is new for DDR5. For SODIMMs, JEDEC defines PMIC5100. This operation converts a 5V supply into regulated values for components on the module. The PMIC allows the host to monitor voltage and current via the sideband channel.

The PMIC5100 has one 5V nominal supply input pin from the card edge through VIN_Bulk. The PMIC has the ability to regulate lower voltages to the HUB which allows external access to read/configure this device prior to the VR ENABLE command. The VIN_Bulk supply, after the VR ENABLE command, will supply all regulated voltages to the PMIC and DRAM. By default, the PMIC powers up in I2C mode, and the host can reconfigure to support I3C-basic if needed.

SPD EEPROM HUB Operation


DDR5 SDRAM modules incorporate an SPD EEPROM with hub function with integrated thermal sensor (TS). The SPD data is stored in a 1024-byte including16 blocks (64 bytes per block), and each block may optionally be write-protected via software command.

The EEPROM resides on a two-wire I3C serial interface, which is also compatible with legacy I2C interface and is not integrated with the memory bus in any manner. It operates as an initiator/target device in the I3C-basic protocol, with all operations synchronized by the serial clock. Transfer rates of up to 12.5 MHz are achievable at 1.0V (NOM). The first 640 bytes are programmed by Zentel for DIMM parameters related usage. The remaining 384 bytes are available for the end user.

Zentel implements reversible software write protection on DDR5 SDRAM-based modules. This prevents the lower 640 bytes (bytes 0 to 639) from being inadvertently programmed or corrupted. The upper 384 bytes remain available for customer use and are unprotected

Function Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	Note
VDD	Voltage on VDD pin relative to Vss	-0.3 ~ 1.4	V	1
VDDQ	Voltage on VDDQ pin relative to Vss	-0.3 ~ 1.4	V	1
VPP	Voltage on VPP pin relative to Vss	-0.3 ~ 2.1	V	3
V _{IN} , V _{OUT}	Voltage on any pin except VREFCA relative to Vss	-0.3 ~ 1.4	V	1
T _{STG}	Storage Temperature	-55 to +100	°C	1,2

Note:

- 1. Stresses greater than those listed in this table may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Storage temperature is the case surface temperature on the center/top side of the device. For the measurement conditions, refer to JESD51-2 standard.
- 3. VPP must be equal or greater than VDD /VDDQ at all times during power on and operation of DRAM device.

DRAM Component Operating Temperature Range

Symbol	Parameter	Rat	ting	Unite	Inita Grada		Units Grade Note	
Symbol	Parameter	Min	Max	Units	Grade	NOLE		
TOPER_NORMAL	Normal Operating Temperature	0	85	°C	NT	1,2,3,4		
TOPER_EXTENDED	Extended Operating Temperature	0	95	°C	ХТ	1,2,3,4		

Notes:

- 1. All operating temperature symbols, ranges, acronyms from JESD402-1.
- 2. Operating Temperature is the case surface temperature on the center / top side of the DRAM. For the measurement conditions, refer to JESD51-2.
- 3. All devices are required to operate in NT and XT temperature ranges.
- 4. When operating above 85°C, the host shall provide appropriate refresh mode controls associated with increased temperature range. The full description of these settings are defined in the tREFI parameters for REFab and REFsb command by device density table in the Refresh operations section (DRAM datasheet)

Operating Conditions

Recommended DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Host Supply Voltage	VIN_BULK	4.25	5.0	5.5	V	
PMIC Output Supply Voltage	V _{DD}	1.067	1.1	1.166	V	1,2,3
PMIC Output Supply Voltage	V _{DDQ}	1.067	1.1	1.166	V	1,2,3
PMIC Output Supply Voltage	V _{PP}	1.746	1.8	1.908	V	3
PMIC Output Supply Voltage	VDDSPD	1.7	1.8	1.98	V	

Notes:

1. VDD must be within 66mv of VDDQ

2. AC parameters are measured with VDD and VDDQ tied together.

3. This includes all voltage noise from DC to 2 MHz at the DRAM package ball.

IDD/IPP Specifications and Conditions

Symbol	Description
	Operating One Bank Active-Precharge Current
	External clock: On; tCK, nRC, nRAS, nRP, nRRD: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_r
IDD0	High between ACT and PRE; CA Inputs: partially toggling according to Table 302; Data IO: VDDQ; DM_n: stable at 1
	Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,(see Table 302); Output Buffer and RTT: Enabled i
	Mode Registers ² ; Pattern Details: see Table 302
IDDQ0	Operating One Bank Active-Precharge IDDQ Current
IDDQ0	Same condition with IDD0, however measuring IDDQ current instead of IDD current
IPPO	Operating One Bank Active-Precharge IPP Current
IFFO	Same condition with IDDO, however measuring IPP current instead of IDD current
	Operating Four Bank Active-Precharge Current
	External clock: On; tCK, nRC, nRAS, nRP, nRRD: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n
IDD0F	High between ACT and PRE; CA Inputs: partially toggling according to Table 303; Data IO: VDDQ; DM_n: stable at 1
	Bank Activity: Cycling with four bank active at a time: (see Table 303); Output Buffer and RTT: Enabled in Mod
	Registers ² ; Pattern Details: see Table 303
IDDQ0F	Operating Four Bank Active-Precharge IDDQ Current
IDDQ0I	Same condition with IDDOF, however measuring IDDQ current instead of IDD current
IPPOF	Operating Four Bank Active-Precharge IPP Current
	Same condition with IDDOF, however measuring IPP current instead of IDD current
	Precharge Standby Current
IDD2N	External clock: On; tCK: refer to Chapter 13.3 Timing Parameters by Speed Grade; CS_n: stable at 1; CA Inputs: partial
IDDZIN	toggling according to Table 304; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer an
	RTT: Enabled in Mode Registers ² ; Pattern Details: see Table 304
IDDQ2N	Precharge Standby IDDQ Current
Ibbqzit	Same condition with IDD2N, however measuring IDDQ current instead of IDD current
IPP2N	Precharge Standby IPP Current
	Same condition with IDD2N, however measuring IPP current instead of IDD current
	Precharge Standby Non-Target Command Current
IDD2NT	External clock: On; tCK: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n: High between WRIT
	commands; CS_n, CA Inputs: partially toggling according to Table 305; Data IO: VDDQ;DM_n: stable at 1; Bank Activity
	all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ;Pattern Details: see Table 305
IDDQ2NT	Precharge Standby Non-Target Command IDDQ Current
(Optional)	Same condition with IDD2NT, however measuring IDDQ current instead of IDD current
IPP2NT	Precharge Standby Non-Target Command IPP Current
(Optional)	Same condition with IDD2NT, however measuring IPP current instead of IDD current
	Precharge Power-Down
IDD2P	Device in Precharge Power-Down, External clock: On; tCK: refer to Chapter 13.3 Timing Parameters by Speed Grad
	CS_n: stable at 1 after Power Down Entry command; CA Inputs: stable at 1; CA11=H during the PDE command; Data IC
	VDDQ; DM_n : stable at 1; Bank Activity : all banks closed; Output Buffer and RTT : Enabled in Mode Registers ² ;
IDDQ2P	Precharge Power-Down
-	Same condition with IDD2P, however measuring IDDQ current instead of IDD current
IPP2P	Precharge Power-Down
	Same condition with IDD2P, however measuring IPP current instead of IDD current
	Active Standby Current
IDD3N	External clock: On; tCK: refer to Chapter 13.3 Timing Parameters by Speed Grade; CS_n: stable at 1; CA Inputs: partial
	toggling according to Table 304; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer an
	RTT: Enabled in Mode Registers ² ; Pattern Details: see Table 304
IDDQ3N	Active Standby IDDQ Current
	Same condition with IDD3N, however measuring IDDQ current instead of IDD current
IPP3N	Active Standby IPP Current Same condition with IDD3N, however measuring IPP current instead of IDD current

加力存

Doc. No. DSZ6ABGH3DACAZF.01 Z6ABGH3DACA-QE 32 GB, 2Rx8 262-Pin DDR5-5600 S0DIMM

IDD3P	Active Power-Down Current			
	Device in Active Power-Down, External clock: On; tCK : refer to Chapter 13.3 Timing Parameters by Speed Grade; CS_n: stable at 1 after Power Down Entry command; CA Inputs: stable at 1; CA11=H during the PDE command; Data IO: VDDQ;			
	DM_n: stable at 1; CA11=H during the PDE command; Data IO : VDDQ; DM_n: stable at 1; CA11=H during the PDE command; Data IO : VDDQ;			
	Active Power-Down IDDQ Current			
IDDQ3P	Same condition with IDD3P, however measuring IDDQ current instead of IDD current			
199999	Active Power-Down IPP Current			
IPP3P	Same condition with IDD3P, however measuring IPP current instead of IDD current			
	Operating Burst Read Current			
IDD4R	External clock: On; tCK, nCCD_S, CL: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n: High between RD; CA Inputs: partially toggling according to Table 306; Data IO: seamless read data burst with different data between one burst and the next one according to Table 306; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2, (see Table 306); Output Buffer and RTT: Enabled in Mode Registers ² ; Pattern Details: see Table 306			
IDD4RC	Operating Burst Read Current with Read CRC Read CRC enabled ⁴ . Other conditions: see IDD4R			
	Operating Burst Read IDDQ Current			
IDDQ4R	Same definition like for IDD4R, however measuring IDDQ current instead of IDD current			
	Operating Burst Read IPP Current			
IPP4R	Same condition with IDD4R, however measuring IPP current instead of IDD current			
	Operating Burst Write Current			
	External clock: On; tCK, nCCD_S_WR, CL: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n: High			
	between WR; CA Inputs: partially toggling according to Table 307; Data IO: seamless write data burst with different data			
IDD4W	between one burst and the next one according to Table 307; DM_n: stable at 1; Bank Activity: all banks open, WR			
	commands cycling through banks: 0,0,1,1,2,2, (see Table 307); Output Buffer and RTT: Enabled in Mode Registers ² ;			
	Pattern Details: see Table 307			
IDD4WC	Operating Burst Write Current with Write CRC Write CRC enabled ³ , Other conditions: see IDD4W			
	Operating Burst Write IDDQ Current			
IDDQ4W	Same condition with IDD4W, however measuring IDDQ current instead of IDD current			
	Operating Burst Write IPP Current			
IPP4W	Same condition with IDD4W, however measuring IPP current instead of IDD current			
	Burst Refresh Current (Normal Refresh Mode)			
	External clock: On; tCK, nRFC1: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n: High between			
IDD5B	REF; CA Inputs: partially toggling according to Table 308; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF			
	command every nRFC1 (see Table 308); Output Buffer and RTT: Enabled in Mode Registers ² ; Pattern Details: see Table			
	308			
IDDQ5B	Burst Refresh IDDQ Current (Normal Refresh Mode)			
IDDQ3B	Same condition with IDD5B, however measuring IDDQ current instead of IDD current			
IPP5B	Burst Refresh IPP Current (Normal Refresh Mode)			
IFFJB	Same condition with IDD5B, however measuring IPP current instead of IDD current			
IDD5F	Burst Refresh Current (Fine Granularity Refresh Mode) tRFC=tRFC2, Other conditions: see IDD5B			
IDDQ5F	Burst Refresh IDDQPP Current (Fine Granularity Refresh Mode)			
ונשטעט	Same condition with IDD5F, however measuring IDDQ current instead of IDD current			
IPP5F	Burst Refresh IPP Current (Fine Granularity Refresh Mode)			
11151	Same condition with IDD5F, however measuring IPP current instead of IDD current			
	Burst Refresh Current (Same Bank Refresh Mode)			
	External clock: On; tCK, nRFCsb : refer to Chapter 13.3 Timing Parameters by Speed Grade; BL: 16 ¹ ; CS_n : High between			
IDD5C	REF; CA Inputs: partially toggling according to Table 309; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF			
	command every nRFCsb (see Table 309); Output Buffer and RTT: Enabled in Mode Registers ² ; Pattern Details: see Table			
	309			
IDDQ5C	Burst Refresh IDDQPP Current (Same Bank Refresh Mode)			
	Same condition with IDD5C, however measuring IDDQ current instead of IDD current			
	Burst Refresh IPP Current (Same Bank Refresh Mode)			
IPP5C	Same condition with IDD5C, however measuring IPP current instead of IDD current			
1				

加力存

Doc. No. DSZ6ABGH3DACAZF.01 Z6ABGH3DACA-QE 32 GB. 2Rx8 262-Pin DDR5-5600 S0DIMM

	52 GB, 2RX8 202-PIII DDR5-5000 SUDIMIN
	Self Refresh Current: Normal Temperature Range
IDD6N	TCASE: 0 - 85°C; External clock: Off; CK_t and CK_c: HIGH; tCK, nCPDED: refer to Chapter 13.3 Timing Parameters by
	Speed Grade; BL: 16 ¹ ; CS_n#: low; CA, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output
	Buffer and RTT: All ODT disabled in MR32-MR35;
	Self Refresh IDDQ Current: Normal Temperature Range
IDDQ6N	Same condition with IDD6N, however measuring IDDQ current instead of IDD current
	Self Refresh IPP Current: Normal Temperature Range
IPP6N	Same condition with IDD6N, however measuring IPP current instead of IDD current
	SelfRefresh Current: Extended Temperature Range ⁾
IDD6E	TCASE: 85 - 95 °C; Extended ⁴ ; External clock: Off; CK_t and CK_c: HIGH; tCK, nCPDED: refer to Chapter 13.3 Timing
IDDOL	Parameters by Speed Grade; BL: 16 ¹ ; CS_n: low; CA, Data IO: High; DM_n:stable at 1; Bank Activity: Self-Refresh
	operation; Output Buffer and RTT: Enabled in Mode Registers ²
122.045	Self Refresh IDDQ Current: Extended Temperature Range
IDDQ6E	Same condition with IDD6E, however measuring IDDQ current instead of IDD current
12265	Self Refresh IPP Current: Extended Temperature Range
IPP6E	Same condition with IDD6E, however measuring IPP current instead of IDD current
	Operating Bank Interleave Read Current
	External clock: On; tCK, nRC, nRAS, nRCD, nRRD_S, nFAW, tCCD_S CL: refer to Chapter 13.3 Timing Parameters by Speed
1007	Grade; BL: 16 ¹ ; CS_n: High between ACT and RDA; CA Inputs: partially toggling according to Table 311; Data IO: read
IDD7	data bursts with different data between one burst and the next one according to Table 311; DM_n: stable at 1; Bank
	Activity: two times interleaved cycling through banks (0, 1,7) with different addressing, see Table 311; Output Buffer
	and RTT: Enabled in Mode Registers ² ; Pattern Details: see Table 311
IDDQ7	Operating Bank Interleave Read IDDQ Current
IDDQ7	Same condition with IDD7, however measuring IDDQ current instead of IDD current
IPP7	Operating Bank Interleave Read IPP Current
IPP7	Same condition with IDD7, however measuring IPP current instead of IDD current
	Maximum Power Saving Deep Power Down Current
	External clock: Off; CK_t and CK_c: HIGH; tCK, nCPDED: refer to Chapter 13.3 Timing Parameters by Speed Grade; BL:
IDD8	16 ¹ ; CS_n#: low; CA:High, DM_n: stable at 1; Bank Activity: All banks closed and device in MPSM deep power down
	mode5; Output Buffer and RTT: Enabled in Mode Registers ² ; Patterns Details: same as IDD6N but MPSM is enabled in
	mode register.
IDDQ8	Maximum Power Saving Deep Power Down IDDQ Current
10000	Same condition with IDD8, however measuring IDDQ current instead of IDD current
IPP8	Maximum Power Saving Deep Power Down IPP Current
IFFO	Same condition with IDD8, however measuring IPP current instead of IDD current
IDD9	MBIST Current
(Optional)	Device in MBIST mode, External clock: On; CS_n: Stable at 1 after MBIST entry; CA Inputs: stable at 1;Data IO: VDDQ;
	Bank Activity: MBIST operation; Output Buffer and RTT: Enabled in Mode Registers ² ;
IDDQ9	MBIST IDDQ Current
(Optional)	Same condition with IDD9, however measuring IDDQ current instead of IDD current
IPP9	MBIST IPP Current
(Optional)	Same condition with IDD9, however measuring IPP current instead of IDD current

Notes:

1. Burst Length: BL16 fixed by MR0 OP[1:0]=00.

- 2. Output Buffer Enable
 - set MR5 OP[0] = 0] : Qoff = Output buffer enabled
 - set MR5 OP[2:1] = 00]: Pull-Up Output Driver Impedance Control = RZQ/7
 - set MR5 OP[7:6] = 00]: Pull-Down Output Driver Impedance Control = RZQ/7

RTT_Nom enable

- set MR35 OP[5:0] = 110110: RTT_NOM_WR = RTT_NOM_RD = RZQ/6 RTT_WR enable
- set MR34 OP[5:3] = 010 RTT_WR = RZQ/2
- CA/CS/CK ODT, DQS_RTT_PART, and RTT_PARK disable
- set MR32 OP[5:0] = 000000

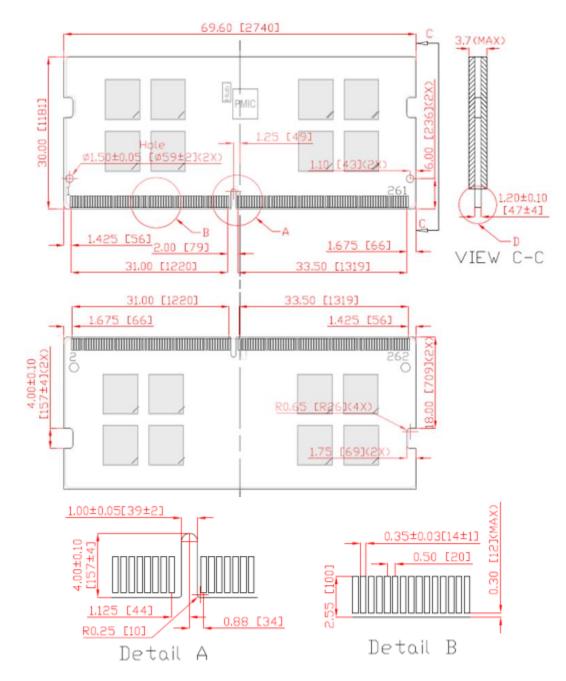
```
- set/MR33 OP[5:0] = 000000
```

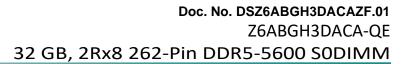

- set MR34 OP[2:0] = 000

- 3. WRITE CRC enabled
- set MR50 OP[2:1] = 11
- 4. Read CRC enabled
 - set MR50:OP[0]=1
- 5. MPSM Deep Power Down Mode
 - set MR2:OP[3]=1 if PDA Enumerate ID not equal to 15
 - set MR2:OP[5]=1 if PDA Enumerate ID equal to 15

IDD Specification

Product Type	Z6ABGH3DACA-QE		
	32 GB	Unit	Note
Organization	2 Rank (X8)		
	X64		
Symbol	Current		
IDD0	1004.8	mA	
IDD0F	1552	mA	
IDD2N	816	mA	
IDD2NT	1313.6	mA	
IDD2P	689.6	mA	
IDD3N	1920	mA	
IDD3P	1792	mA	
IDD4R	4403.2	mA	
IDD4RC	4288	mA	
IDD4W	5008	mA	
IDD4WC	4880	mA	
IDD5B	3664	mA	
IDD5F	3435.2	mA	
IDD5FC	1712	mA	
IDD6E	820.8	mA	
IDD7	4992	mA	
IDD8	416	mA	
IDD9	3014.4	mA	


IPP Specification


Product Type	Z6ABGH3DACA-QE		
	32 GB	Unit	Note
Organization	2 Rank (X8)		
	X64		
Symbol	Current		
IPPO	110.4	mA	
IPPOF	224	mA	
IPP2N	64	mA	
IPP2NT	64	mA	
IPP2P	56	mA	
IPP3N	238.4	mA	
IPP3P	220.8	mA	
IPP4R	288	mA	
IPP4W	329.6	mA	
IPP5B	720	mA	
IPP5F	720	mA	
IPP5C	720	mA	
IPP6E	136	mA	
IPP7	844.8	mA	
IPP8	56	mA	
IPP9	480	mA	

Module Dimensions

All dimensions are in millimeter[mils] and should be kept within a tolerance of +/- 0.15[6], unless otherwise specified.

Change History						
Document No.: DSZ6A8GH4SAAAZF.(Rev.#)						
Rev. #	Who	When	What			
01	Rik	2023-06-08	Initial version			